Effect of soil surface roughness and scene components on soil surface bidirectional reflectance factor

نویسندگان

  • Z. Wang
  • C. A. Coburn
  • X. Ren
  • P. M. Teillet
چکیده

Wang, Z., Coburn, C. A., Ren, X. and Teillet, P. M. 2012. Effect of soil surface roughness and scene components on soil surface BRF. Can. J. Soil Sci. 92: 297 313. Bidirectional Reflectance factor (BRF) data of both rough [surface roughness index (SRI) of 51%] and smooth soil surfaces (SRI of 5%) were acquired in the laboratory under 308 illumination zenith angle using a Specim V10E imaging spectrometer and an Ocean Optics non-imaging spectrometer mounted on the University of Lethbridge Goniometer System version 2.5 (ULGS-2.5) and version 2.0 (ULGS-2.0), respectively. Under controlled laboratory conditions, the rough soil surface exhibited higher spectral reflectance than the smooth surface for most viewing angles. The BRF of the rough surface varied more than the smooth surface as a function of the viewing zenith angle. The shadowing effect was stronger for the rough surface than for the smooth surface and was stronger in the forward-scattering direction than in the backscattering direction. The pattern of the BRF generated with the non-image based data was similar to that generated with the whole region of interest (ROI) of the image-based data, and that of the whole ROI of the image-based data was similar to that of the illuminated scene component. The BRF of the smooth soil surface was dominated by illuminated scene component, i.e., the sunlit pixels, whereas the shaded scene component, i.e., the shaded pixels, was a larger proportion of the BRF of the rough soil surface. The image-based approach allowed the characterization of the contribution of spatial components in the field of view to soil BRF and improved our understanding of soil reflectance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Condition for precise measurement of soil surface roughness

Simple equation to approximate the bidirectional reflectance from vegetative canopies and bare soil surfaces, " Appl. A reflectance model for the homogeneous plant canopy and its inversion, " Remote Sens. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing, " IEEE Trans. On the derivation of kernels for kernel-...

متن کامل

Modeling Spectral and Bidirectional Soil Reflectance

SOILSPECT is a radiative transfer model, derived from Hapke's model, that represents the optical properties of soil from 450 nm to 2450 nm. The spectral and bidirectional reflectance of 26 soils was measured in the laboratory both with a field spectroradiometer (1000 narrow wavebands from 450 nm to 2450 nm) and a radiometer simulating TM channels (the five TM2, TM3, TM4, TM5, and TM7 broad band...

متن کامل

Effects of Soil Surface Rock Fragments on Runoff Variables of Field Plots under Rainfall Simulation

    Soil surface rock fragment is considered as an important factor on runoff and soil erosion. However, few studies have been focused on quantitative evaluation of the effect of soil surface rock fragments on runoff components as an integral part of soil erosion process especially in natural conditions. The present study has been conducted to evaluate the effect of soil surface rock fragments ...

متن کامل

Studying the effect of roughness on soil-geotextile interaction in direct shear test

Abstract One of the methods of increasing soil resistance against failure is soil reinforcement using geosynthetics. Soil-geosynthetic interactions are of great importance and are affected by friction and adhesion at their interface. Soil gradation, contact surface roughness and geotextile density are among the factors affecting soil-geotextiles interaction this study, to investigate the eff...

متن کامل

Soil Organic Carbon Assessment by Field and Airborne Spectrometry in Bare Croplands: Accounting for Soil Surface Roughness

Visible, Near and Short Wave Infrared (VNSWIR) diffuse reflectance spectroscopy (350 nm to 2500 nm) has been proven to be an efficient tool to determine the Soil Organic Carbon (SOC) content. SOC assessment (SOCa) is usually done by using calibration samples and multivariate models. However one of the major constraints of this technique, when used in field conditions is the spatial variation in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012